DARPA Hypersonic Air-breathing Weapon Concept achieves successful flight


DARPA, in partnership with the U.S. Air Force, completed a free flight test of its Hypersonic Air-breathing Weapon Concept (HAWC) last week. The missile, built by Raytheon Technologies, was released from an aircraft seconds before its Northrop Grumman scramjet (supersonic combustion ramjet) engine kicked on. The engine compressed incoming air mixed with its hydrocarbon fuel and began igniting that fast-moving airflow mixture, propelling the cruiser at a speed greater than Mach 5 (five times the speed of sound).

Follow Air Recognition on Google News at this link


DARPA Hypersonic Air breathing Weapon Concept achieves successful flight Systems that operate at hypersonic speeds—five times the speed of sound (Mach 5) and beyond—offer the potential for military operations from longer ranges with shorter response times and enhanced effectiveness compared to current military systems. Such systems could provide significant payoff for future U.S. offensive strike operations, particularly as adversaries’ capabilities advance (Picture source: DARPA)


The Hypersonic Air-breathing Weapon Concept (HAWC) program is a joint DARPA/U.S. Air Force (USAF) effort that seeks to develop and demonstrate critical technologies to enable an effective and affordable air-launched hypersonic cruise missile. The program intends to emphasize efficient, rapid and affordable flight tests to validate key technologies.

HAWC plans to pursue flight demonstrations to address three critical technology challenge areas or program pillars—air vehicle feasibility, effectiveness, and affordability. Technologies of interest include:

  • - Advanced air vehicle configurations capable of efficient hypersonic flight
  • - Hydrocarbon scramjet-powered propulsion to enable sustained hypersonic cruise
  • - Approaches to managing the thermal stresses of high-temperature cruise
  • - Affordable system designs and manufacturing approaches

The HAWC vehicle operates best in oxygen-rich atmosphere, where speed and maneuverability make it difficult to detect in a timely way. It could strike targets much more quickly than subsonic missiles and has significant kinetic energy even without high explosives.

"The HAWC free flight test was a successful demonstration of the capabilities that will make hypersonic cruise missiles a highly effective tool for our warfighters,” said Andrew "Tippy" Knoedler, HAWC program manager in DARPA's Tactical Technology Office. "This brings us one step closer to transitioning HAWC to a program of record that offers next generation capability to the U.S military."

Goals of the mission were: vehicle integration and release sequence, safe separation from the launch aircraft, booster ignition and boost, booster separation and engine ignition, and cruise. All primary test objectives were met.

The achievement builds on pioneering scramjet projects, including work on the X-30 National Aero-Space Plane as well as unmanned flights of NASA’s X-43 vehicles and the U.S. Air Force’s X-51 Waverider.

“HAWC’s successful free flight test is the culmination of years of successful government and industry partnership, where a single, purpose-driven team accomplished an extremely challenging goal through intense collaboration,” Knoedler added. “This historic flight would not have been possible without the dedication of industry, U.S. Air Force, and Navy flight test personnel who persevered through the pandemic to make the magic happen.”

The HAWC flight test data will help validate affordable system designs and manufacturing approaches that will field air-breathing hypersonic missiles to our warfighters in the near future.


Cookies settings

×

Functional Cookies

This site uses cookies to ensure its proper functioning and cannot be deactivated from our systems. We don't use them not for advertising purposes. If these cookies are blocked, some parts of the site will not work.

Session

Please login to see yours activities!

Other cookies

This website uses a number of cookies to manage, for example: user sessions.